

Internet of Things (IoT)

Introductions

Your objectives

- What do you expect to learn from this course?
- How is it relevant to you?

Aims of this course

- Define IoT
- Understand the technology behind IoT
- Analyse operational aspects of IoT
- Understand IoT business models
- Explore the policy and regulatory implications of IoT
- Examine a number of examples of IoT

Outline of the sessions

- Day 1:
- Introduction
- Overview of IoT
 - What is IoT?
 - Differences between IoT and traditional services
 - Drivers and inhibitors of IoT
 - Forecasts
- Technology
 - Value chain and technology of IoT networks
 - Spectrum for IoT
- Business models
- Guided case study
- Wrap-up day 1

- Day 2:
- Introduction
- Case studies
 - Elderly care monitoring
 - Smart public garbage bin
 - Security alarms
 - Industrial IoT
- Policy Summary
- Wrap-up

Overview of IoT

- An introductory video
- What is IoT?
- Exercise: How does IoT differ from traditional services?
- Drivers and inhibitors of IoT
- Connections and revenue forecasts

Overview of IoT: what is IoT?

Key messages

IoT is still at a very early stage of development, so definitions are still evolving

Smart mining

Connected car

What is IoT?

Smart meters

thermostat

Genergyaware

Smart solar power plant

Smart cities

Remote health monitoring

Smart farm

Connected thermostat

Connected car

Remote health monitoring

Smart solar power plant

Smart meters

Smart mining

Smart city

Smart farm

Exercise: Identify common IoT elements

- Thinking about the eight examples just presented, what common patterns/elements can you identify across the solutions?
- What would be your definition of IoT?

Network / Connectivity

Device

Sensor / Actuator

typically

Definitions of Internet of Things:

The Internet of Things (IoT) refers to the use of intelligently <u>connected devices</u> and systems to leverage <u>data</u> gathered by embedded <u>sensors</u> and <u>actuators</u> in machines and other physical objects. – *GSMA*

> The IoT is [...] the <u>interconnection</u> of multiple M2M applications, often enabling the exchange of <u>data</u> across multiple industry sectors. An example is the ability to manage traffic flow, reduce pollution and improve health by combining data from a range of transport, healthcare and environmental <u>sensors</u>. – Ofcom

Noun - The *interconnection* via the Internet of computing *devices* embedded in everyday objects, enabling them to send and receive *data* – *Oxford Dictionary*

Definitions of Internet of Things:

Noun - The <u>interconnection</u> via the Internet of computing <u>devices</u> embedded in everyday objects, enabling them to send and receive <u>data</u> – Oxford Dictionary

Internet of Things (IoT) vs Machine-to-Machine (M2M)

Summary: what is IoT

There are four key elements common to an IoT solution A network is used to provide connectivity Data is transmitted and often received by the end device The solution is integrated into a new or existing device Data is captured by sensors and can trigger a reaction by actuators

Overview of IoT: How does IoT differ from traditional services?

Key messages

Regulators should recognise these differences when considering policy and regulatory frameworks

How does IoT differ from traditional services?

How does IoT differ from traditional services?

	Traditional services	ΙοΤ
Connected elements	People	?
Connections	Correlated to # of people	?
Core service	Connectivity	?
Footprint	National	?
Connectivity ARPU	High	?
Business model	B2C or B2B	?

There are many differences...

...and governments can help IoT grow...

	Traditional services	Support	ΙοΤ
Connected elements	People		Things
Connections	Correlated to # of people		Correlated to # of things
Core service	Connectivity	2)	Application and device
Footprint	National		Global
Connectivity ARPU	High		Low
Business model	B2C or B2B		B2B2C or B2B2B

	Traditional services	Support	ΙοΤ
Connected elements	People		Things
Connections	Correlated to # of people	Building trust	Correlated to # of things
Core service	Connectivity	Interoperability	Application and device
Footprint	National	Global deployment	Global
Connectivity ARPU	High	Promoting investment	Low
Business model	B2C or B2B		B2B2C or B2B2B

Summary: How does IoT differ from traditional services?

IoT services differ from traditional service on dimensions such as:

- What is being connected (things vs people)
- The core element of the service (application vs connectivity)
- The volume of connections
- The ARPU (low vs high)

2

Governments can help drive IoT adoption in their country by focusing on four areas:

 Enabling global deployment, promoting investment, building trust, promoting interoperability

Overview of IoT: drivers and inhibitors of IoT

Key messages

IoT is being driven by technology advancements, decreasing costs and demands for efficiency

Clarity on how data privacy laws are applied to IoT can help this nascent market develop

Some drivers of IoT...

	Government policies promoting IoT		Cost savings		New revenue opportunities	
		Te	echnology advancement	S		
\langle			Decreasing costs			

...and some inhibitors of IoT

Summary: drivers and inhibitors of IoT

- Government policies promoting IoT growth
- Cost savings
- New revenue opportunities

IoT's growths can be hindered by:

- Technology limitations
- Privacy requirements
- Security requirements
- The business case
- Policy and legal barriers

Overview of IoT: connections and revenue forecasts

Key messages

IoT is still a nascent industry and is expected to grow at a fast pace

There are many socio-economic benefits that IoT solutions can deliver

IoT connections

* Gartner did not report forecasts for 2022

IoT cellular and LPWA connections

IoT cellular + LPWA as a share of total IoT connections

IoT cellular and LPWA connections

IoT cellular + LPWA connections as a share of all cellular + LPWA

IoT revenues

IoT cellular and LPWA revenues

IoT cellular + LPWA revenue (connectivity) as a share of total IoT

IoT cellular and LPWA revenues

IoT cellular + LPWA revenue as a share of all cellular + LPWA

There are many configurations for IoT solutions

Even for solutions using mobile networks, connectivity is only a small share of revenue

Revenue for IoT services using cellular and LPWA connectivity, by value chain element

Socio-economic benefits of IoT

Economic benefits

Between \$3.9tn and \$11.1tn of economic impact by 2025 - Mckinsey

\$14.4 trillion in higher revenue and lower cost - Cisco

Annual global savings of over \$5.6tn with semi-autonomous and autonomous cars – Morgan Stanley

Summary: connections and revenue forecasts

1	IoT is still a nascent industry and is expected to grow at a fast pace			
2	IoT cellular accounts for a very small share of the total IoT			
3	There are a wide range of socio-economic benefits that IoT can deliver			

Technologies related to IoT networks

- Value chain and connectivity technologies
- Exercise: Which technology for which IoT solution?
- Spectrum and policy implications

Technology: value chain and connectivity technologies

Key messages

Connectivity is only one part of the IoT value chain

Many different connectivity technologies support IoT solutions

The characteristics of each technology define its suitability for a given IoT solution

The basic IoT value chain

Key characteristics of IoT networks

	Satellite	Traditional cellular (e.g. 2G, 3G, 4G)	LPWA (e.g. Sigfox, LoRa, NB-IoT)	Local Area IoT Network (e.g. Wi-Fi , ZigBee, RF- mesh)	General Local Area Network (e.g. Bluetooth, Wi- Fi 801.22an)
Network area		Wide area		Loca	l area
Spectrum					
Battery life					

	Satellite	Traditional cellular (e.g. 2G, 3G, 4G)	LPWA (e.g. Sigfox, LoRa, NB-IoT)	Local Area IoT Network (e.g. Wi-Fi , ZigBee, RF- mesh)	General Local Area Network (e.g. Bluetooth, Wi- Fi 801.22an)
Network area		Wide area		Local	larea
Spectrum	Dedicate	ed (managed QoS)		Shared (best-effo	ort QoS)
Battery life					

	Satellite	Traditional cellular (e.g. 2G, 3G, 4G)	LPWA (e.g. Sigfox, LoRa, NB-IoT)	Local Area IoT Network (e.g. Wi-Fi , ZigBee, RF- mesh)	General Local Area Network (e.g. Bluetooth, Wi- Fi 801.22an)
Network area		Wide area		Loca	l area
Spectrum	Dedicate	ed (managed QoS)		Shared (best-eff	ort QoS)
Battery life		Evolutions of 2G & 4G (e.g. LTE-M)	Long battery	life	

Satellite	Traditional cellular (e.g. 2G, 3G, 4G)	LPWA (e.g. Sigfox, LoRa, NB-IoT)	Local Area IoT Network (e.g. Wi-Fi , ZigBee, RF- mesh)	General Local Area Network (e.g. Bluetooth, Wi- Fi 801.22an)
	Connectiv	ity cost (high, mediun	n and low)	
	Module	cost (high, medium a	nd low)	
	Typical ba	ndwidth (high, mediur	n and low)	

Summary: value chain and connectivity technologies

Technology: Remote SIM provisioning for Machine-to-Machine devices

Key messages

Remote 'over the air' provisioning of M2M devices

Promotes a common, global and interoperable remote provisioning architecture

The GSMA remote SIM provisioning for Machine-to-Machine (M2M) specification

Specification for remote provisioning of SIM cards

Advantages

- Provides a global product for a global manufacturing process.
- Local provisioning when the product is deployed in the field.
- Solves the challenge of managing remotely located devices in the field
- Many of the interfaces and processes for SIM personalisation are virtually identical to current processes

Remote SIM Provisioning for M2M

Broad industry support

 22 operators have launched remote SIM provisioning for M2M and 5 major automotive manufacturers endorse the technology

Summary: Remote SIM provisioning for M2M

Technology: spectrum

Spectrum used in IoT solutions can be dedicated (licensed) or shared (unlicensed); each option has benefits and disadvantages

Spectrum for IoT					
Characteristic	Dedicated	Shared			
QoS	Supported	Not supported			
Cost	Higher	Lower			
Time to market	Slower	Faster			

Spectrum harmonisation can help the IoT market grow faster

Benefit of harmonisation	Acts as a driver for IoT market growth through lower cost of modules		
Industry players' role	Identify which bands are to be harmonised		
Holistic approach	Harmonisation needs to consider the spectrum requirement of different IoT applications		

Comparison of licensed and unlicensed IoT technologies

Name	LoRa Sigfox		LTE-M	LTE NB-IoT	EC-GSM-IoT
Description Uses spread- spectrum technology and is optimised for long battery life		Uses Ultra Narrow Band technology to deliver long battery life and low data- transfer speeds	Offers the broadest range of cellular IoT capabilities	Scalable, ultra low- end cellular loT with deep indoor coverage	Builds on legacy GPRS, offering improved battery life, wider coverage
Spectrum	Unlicensed	Unlicensed	Licensed	Licensed	Licensed
Deployment	ISM bands	ISM bands	In-band LTE	In-band & Guard- band LTE, standalone	In-band GSM
Bands 868/ 902-928Mhz		868/915 MHz	LTE bands 1, 2, 3, 5, 7, 8, 11,12, 13, 17, 18, 19, 20, 21,	LTE bands 1, 2, 3, 5, 8, 12, 13, 17, 18, 19, 20, 26, 28, 66	Available for all GSM bands
Standard Org. LoRa Alliance E		ETSI*	3GPP	3GPP	3GPP
Coverage 153-161 dB 149-161 dB		149-161 dB	155.7 dB (23 dBm power class) **	164 dB for standalone (23 dBm power class) *	164 dB with 33dBm power class, 154 dB with 23dBm power class
Max. Data Rate 50 kbps		100 bps	1 Mbps	~240kbps	~250 kbps

Mobile IoT: 3GPP standardised technologies for licensed mobile spectrum

Part of 3GPP Release 13 (June'2016)

NB-IoT	• Narrow Band – IoT (LTE NB 1)
LTE-M	Long Term Evolution for Machines (also known as Cat M1)
EC-GSM-IoT	Extended Coverage GSM IoT
EC-GSM-IoT	Extended Coverage GSM IoT

LPWA announcements increased significantly in 2016

Active (deployed) or planned LPWA networks, 2015 and 2016

Matching applications to technologies

- Split into groups
- In the next slides you will be presented with eight applications
- Describe the applications in terms of the six dimensions previously presented and then identify the connectivity solutions that you think could best suit the needs of the application

Activity

Smart washing machine

Smart t-shirt

HD surveillance camera

Smart water pump

Fleet tracking system

Smart parking

sensors

76

Activity

Smart washing machine

Washing machine that can be controlled via a mobile app

Can record heart rate, GPS location, route, speed and altitude; data is sent to mobile phone

Smart t-shirt

HD surveillance camera

pressure

Smart parking sensor

Sensors monitor operating parameters, such as temperature and

Smart oil field

Informs if pump is damaged

Smart water pump

Monitors fleet location and driving habits

Fleet tracking system

eHealth

Sends patient data

Sends out video accessible via a mobile app

Exercise template [1/2]

Application requirement	Smart washing machine	Smart t-shirt	eHealth	Smart oil field
Network Area	WideLocal	WideLocal	WideLocal	WideLocal
Spectrum	DedicatedShared	DedicatedShared	DedicatedShared	DedicatedShared
Battery life	 Long Short N/A 	LongShortN/A	LongShortN/A	LongShortN/A
Connectivity cost	HighMediumLow	HighMediumLow	HighMediumLow	HighMediumLow
Module cost	 High Medium Low 	HighMediumLow	HighMediumLow	HighMediumLow
Bandwidth	High Medium Low	HighMediumLow	HighMediumLow	HighMediumLow
Connectivity technology?	Wi-Fi			

Exercise template [2/2]

Application requirement	Smart water pump	Surveillance camera	Smart parking sensors	Fleet tracking
Network Area	WideLocal	WideLocal	WideLocal	WideLocal
Spectrum	DedicatedShared	DedicatedShared	DedicatedShared	DedicatedShared
Battery life	LongShortN/A	LongShortN/A	LongShortN/A	LongShortN/A
Connectivity cost	HighMediumLow	HighMediumLow	HighMediumLow	HighMediumLow
Module cost	HighMediumLow	HighMediumLow	HighMediumLow	HighMediumLow
Bandwidth	HighMediumLow	HighMediumLow	HighMediumLow	HighMediumLow
Connectivity technology?				

Samsung WF457 smart washer

Feature	Re	quirement
Network Area	•	Local
Spectrum	•	Shared
Battery life	•	N/A
Connectivity cost	•	Low
Module cost	•	Low
Bandwidth	•	Medium
Bandwidth	•	Medium

Other technologies: 2G, 3G

Smart t-shirt Cityzen Sciences Smart D-Shirt

Feature	Re	quirement
Network Area	•	Local
Spectrum	•	Shared
Battery life	•	Long
Connectivity cost	•	Low (None)
Module cost	•	Low
Bandwidth	•	Low

Other technologies: LPWA

eHealth Medtronic MyCareLink Monitor

Feature	Re	quirement
Network Area	•	Wide
Spectrum	-	Dedicated
Battery life	-	N/A
Connectivity cost	•	Medium
Module cost	-	Medium
Bandwidth	•	Medium

Other technologies: 4G

Smart oil field Inmarsat SCADA network

Feature	Re	quirement
Network Area	•	Wide
Spectrum	•	Dedicated
Battery life	•	N/A
Connectivity cost	•	High
Module cost	•	High
Bandwidth	•	Low to high

Satellite

Other technologies: 2G, 3G, 4G, LPWA

Smart water pump CellPump

Feature	Re	quirement
Network Area	•	Wide
Spectrum	•	Shared
Battery life	•	Long
Connectivity cost	•	Low
Module cost	-	Low
Bandwidth	•	Low

Other technologies: 2G

HD surveillance camera Thinx 4G Camera

Feature	Re	quirement
Network Area	•	Wide
Spectrum	-	Dedicated
Battery life	-	N/A
Connectivity cost	•	Medium
Module cost	-	High
Bandwidth	•	High

Other technologies: 3G, Wi-Fi

Smart parking sensors from Libelium

Feature	Re	quirement
Network Area	•	Wide
Spectrum	•	Shared
Battery life	•	Long
Connectivity cost	•	Low
Module cost	•	Low
Bandwidth	•	Low

Other technologies: 2G, Wi-Fi

Fleet tracking Cloud Your Car

Feature	Re	quirement
Network Area	•	Wide
Spectrum	•	Dedicated
Battery life	•	N/A
Connectivity cost	•	Medium
Module cost	•	Low
Bandwidth	•	Low

Other technologies: 3G, LPWA

Exercise solution

Application	Technology in example	Other possible technologies
Smart washer	Wi-Fi	2G, 3G
Smart t-shirt	Bluetooth	LPWA
eHealth	3G	4G
Smart oil field	Satellite	2G, 3G, 4G, LPWA
Electricity smart meter	RF-mesh	2G, LPWA
Surveillance camera	4G	3G, Wi-Fi
Smart parking sensors	LPWA	2G, Wi-Fi
Fleet tracking	2G	3G, LPWA

Business models of IoT

Key messages

Business model innovation will mostly impact where the IoT company interacts with the customer

Business models of IoT: from suppliers to customer

Business models of IoT: from suppliers to customer

There are 5 main business models enabled by IoT between the IoT company and the customer ...

Business models
Revenue-sharing
Cost-savings sharing
Product-sharing
Product-as-a-Service
Performance-as-a- Product

Transactional

...and can be compared in terms of revenue structure and device ownership

Rusinoss models	Revenue of the IoT company			Device ownership	
Business models	Upfront	Recurring	Usage	User	IoT company
Revenue-sharing		\checkmark			\checkmark
Cost-savings sharing		\checkmark			\checkmark
Product-sharing			\checkmark		\checkmark
Product-as-a-Service		\checkmark			\checkmark
Performance-as-a- Product			\checkmark	\checkmark	
Transactional	\checkmark			\checkmark	

The descriptions above are the most common and variations are possible. For example, transactional may also include device ownership from the IoT company.

Revenue-sharing

Problem	Tracking location and status of vehicles
Traditional solution	 Traditional fleet management solutions were static software packages that could not provide the fleet manager real time information on a vehicle's location or status
loT	 A tracking device, like an on-board diagnostics (OBD-II) module, can be
solution	placed in the vehicle and provide the fleet manager with real time information
loT	 A local reseller, like a mobile operator, sells and supports the solution. It
business	shares revenues with the company providing the technology (hardware and
model	software) for the service.

Revenue-sharing

Traditional business model

IoT business model

The revenue share model gives the local reseller access to a broader range of technology. For the fleet management firm, the model allows it to enter new countries. For both parties, the revenue share model limits risk.

Costs savings sharing

Problem	Home/building energy consumption.
Traditional solution	 The end user pays for the Heating, Ventilating and Air Conditioning (HVAC) system and its maintenance, and also pays the energy company for its power consumption.
loT solution	 The IoT company installs equipment to monitor and control the HVAC system at the customer's premise. The HVAC system automatically adjusts to the user's requirements and optimises its energy consumption.
loT business model	 The end user pays no up front fees; equipment costs are covered by the IoT company. The end user benefits from lower energy costs. A share of the money saved goes to the IoT company to cover the cost of equipment.

Costs savings sharing

The IoT solution allows end users to save on their energy consumption costs and use part of the savings to pay for the IoT solution

Product-sharing

Problem	Relatively high investment and maintenance costs of a car.
Traditional solution	 The end user buys the car upfront and pays for its ongoing maintenance, fuel and insurance.
IoT solution	 The end user can drive a number of cars made available across a city, without needing to own one. All car related costs are managed by the IoT company, Car2Go. A smartphone app, allows users to reserve the car, locate and unlock it.
loT business model	 The IoT company charges end users by the minute for using a car. The fees include the cost of the car, its maintenance, fuel and insurance. From managing a large fleet of vehicles, the IoT company can achieve economies of scale, which can be translated into competitive prices for the end user.

Product-sharing

IoT business model

The IoT business model allows the IoT company to transfer savings from economies of scale to the end user

Product-as-a-Service

Problem	High investment and maintenance cost of heavy medical equipment.
Traditional solution	 The user (e.g. hospital) buys the equipment upfront and can face high maintenance costs. Different suppliers may be involved in selling and supporting the equipment.
IoT solution	 The hospital pays for the equipment and maintenance to the IoT company. The equipment is remotely monitored in terms of usage and performance, allowing the IoT company to perform predictive maintenance. As a result, the end user can benefit from reduced or no disruption from equipment downtime.
loT business model	 The IoT company charges a recurring fee to the hospital. This fee includes the use of the equipment and its maintenance. The equipment is owned by the IoT company, who by actively monitoring it can pre-empt potentially serious issues that could result in expensive maintenance.

Product-as-a-Service

The IoT solution can perform predictive maintenance, allowing the end user to benefit from lower or no disruption and more affordable cost

Performance-as-a-product

Performance-as-a-product

The IoT solution aligns the interests of the airline with the maintenance provider

Summary: business models

IoT can be a catalyst for significant innovation in business models

2

Business model innovation will have the most impact in the area where the IoT company interacts with the cutomer

Wrap up day 1

- So far, we have learnt that:
- IoT is still nascent and there is no single definition
- The transition from traditional services to IoT requires policymakers and regulators to apply existing rules in a transparent and consistent way
- There are several technological, economic and legal drivers and inhibitors of IoT
- IoT can help deliver a wide range of socio-economic benefits
- A variety of connectivity technologies can support IoT solutions
- IoT can enable new business models

Thank you!

Internet of Things (IoT)

Day 2

Summary of day 1

- So far we have learnt that...
 - IoT is still nascent and there is no single definition
 - The transition from traditional services to IoT requires policymakers and regulators to apply existing rules in a transparent and consistent way
 - There are several technological, economic and legal drivers and inhibitors of IoT
 - IoT can help deliver a wide range of socio-economic benefits
 - A variety of connectivity technologies can support IoT solutions
 - IoT can enable new business models

Guided case study

- Put yourself in the shoes of an IoT company that wants to launch a service
 - What customers are you targeting?
 - Which customer needs are you addressing?
 - Which connectivity technology will you use?
 - Which business models will you adopt?
 - What legal and operational risks will you have to consider?

Exercise template [1/4]

Exercise template [2/4]

Technologies				
	Feature	Requirement	Comment	
	Network Area	WideLocal		
	Spectrum	DedicatedShared		
	Battery life	LongShort		
	Connectivity cost	HighMediumLow		
	Module cost	HighMediumLow		
	Bandwidth	HighMediumLow		
	Technologies:			

Exercise template [3/4]

Business models	Revenue of the IoT company	Device ownership	
Revenue-sharing	Recurring	IoT company	
Cost-savings sharing	Recurring	IoT company	
Product-sharing	Usage	IoT company	
Product-as-a-Service	Recurring	IoT company	
Performance-as-a- Product	Usage	User	
Transactional	Upfront	User	

Exercise template [4/4]

Guided case: Farm water monitoring

- Problem that needs to be addressed:
- How do I know if my water tanks need to be refilled?

Farm water monitoring

ΙοΤ

solution

Benefits

Farm water monitoring

IoT solution & benefits

•A sensor is placed in the water tanks and troughs to monitor the water level and send an alert to the controlling station (or via SMS text or email) If water levels, flow or pressures go outside a pre-configured range

•The solution makes it much easier for a farmer to check water levels in tanks and troughs and helps keep livestock safe from dehydration, which is especially important in developing countries and dry lands.

Farm water monitoring

		Technologies		
Feature	Requirement	Comment		
Network Area	 Wide 	Extended fields in remote locations can require significant signal coverage		
Spectrum	 Shared / Dedicated 	Quality of service of transmission is not a crucial factor		
Battery life	 Long 	The sensors may be placed in remote points of the field and need to have long battery life. Solar panels may contribute to extending battery life		
Connectivity cost	 Low 	Associated to the low bandwidth requirement		
Module cost	 Medium 	Price may be an issue in developing countries		
Bandwidth	Low	Data needed to monitor water level is limited		
Technologies: LPWA 2G ?				

Farm water monitoring – most likely business models

Business models	Revenue of the IoT company	Device ownership	
Revenue-sharing	Recurring	IoT company	
Cost-savings sharing	Recurring	IoT company	
Product-sharing	Usage	IoT company	
Product-as-a-Service	Recurring	IoT company	
Performance-as-a-Product	Usage	User	
Transactional	Upfront	User	
	Мс	st likely business models	

Farm water monitoring

Liability

Liability

• If the solution fails and animals die because of lack of water, who is to blame:

- The local reseller installer?
- The IoT technology company?
- The network operator?
- The farmer?

Case studies exercises

- Elderly monitoring
- Smart public garbage bin
- Security alarms
- Industrial IoT

Instructions

- Divide into groups
- Build a business case around the example given
- Put yourself in the position of the IoT company
- Follow the topic area structure in the hand-outs
 - IoT solution & benefits
 - Technology
 - Business model
 - Risks and policies
- Compare each group's solution

Problems that you will need to address

- How can I monitor an elderly family member?
- How can you improve the efficiency of waste collection in cities?
- How can I keep my home protected?
- How can I improve manufacturing efficiency?

Case study 1: Elderly care monitoring

activity (e.g. doors, people)

using cellular connectivity

IoT solution & benefits

loT solution

Benefits

• The monitoring system can reduce family members' anxiety regarding the well being of their elderly relative

Movement sensors are placed around the home, transmitting data on

• The sensors are connected to a hub that sends data to an application,

• Elderly can continue living in their homes, avoiding being taken to a care home

		Technologies	
Feature	Requirement	Comment	
Network Area	 Wide 	The hub sending data to an application uses cellular connectivity, so requires wide network area	
Spectrum	 Dedicated 	The connectivity service needs to be reliable	
Battery life	Low	The hub is plugged in to an electrical outlet	
Connectivity cost	 Medium 	Price sensitivity will vary by person or country. We assume the price will need to be moderate	
Module cost	 Medium 	Again, price sensitivity will vary but we assume it will need to be moderate	
Bandwidth	 Low 	The application requires low bandwidth	
Technole	ogies: 20	G ? ?	

Elderly care monitoring – most likely business models

Business models	Revenue of the IoT company	Device ownership	
Revenue-sharing	Recurring	IoT company	
Cost-savings sharing	Recurring	IoT company	
Product-sharing	Usage	IoT company	
Product-as-a-Service	Recurring	loT company	
Performance-as-a-Product	Usage	User	
Transactional	Upfront	User	
	Mc	ost likely business models	

Privacy and data protection

Data collection	 Who collects, shares and uses the individuals' data and why?
Data protection	How is the security of individuals' data ensured?How is the privacy of individuals' data ensured?
Data use	 How can individuals exercise choice and control over how their data will be used?

Case study 2: Smart public garbage bin

	IoT solution & benefits			
 IoT solution The smart garbage bin monitors and reports the bins status, alerting when it needs to be emptied The solutions helps optimise waste collection (i.e. only emptying bins when necessary) 				
 Benefits Pollution is reduced as bins are never full and traffic on the roads is reduced Taxes can be spent more efficiently 				

		Technologies	
Feature	Requirement	Comment	
Network Area	 Wide 	The bins are located community-wide or city-wide	
Spectrum	 Shared / Dedicated 	Quality of service (timeliness) of transmission is not a crucial factor	
Battery life	Long	Battery life has to be long, but use of solar panels may help widen the battery life	
Connectivity cost	Low	Expected to be low and in line with bandwidth requirements	
Module cost	Low	The cost per bin needs to be low so it is feasible to deploy across all bins in a given community/city. Bins are exposed and easily subject to theft.	
Bandwidth	Low	The application requires low bandwidth	
Technolo	gies: LP\	VA 2G ?	

Smart public garbage bin – most likely business models

Business models	Revenue of the IoT company	Device ownership	
Revenue-sharing	Recurring	IoT company	
Cost-savings sharing	Recurring	IoT company	
Product-sharing	Usage	loT company	
Product-as-a-Service	Recurring	IoT company	
Performance-as-a-Product	Usage	User	
Transactional	Upfront User		
	Mc	ost likely business models	

Privacy

 Bata collection Regulators should support and en measures by which industry can in mitigate risks to privacy, and throu can demonstrate accountability. This objective can be achieved the enhancing technologies and tools consumers to manage their privace how their data are used. 	courage dentify and gh which they rough privacy that help sy and control
--	---

- In 2013, the City of London fitted devices in recycling bins to collect data on footfall.
- The data was collected by logging the media access control (MAC) of passing phones and done without the knowledge of those individuals.

Case study 3: Security alarms

Security alarms

Security alarms

Λ

Security alarms

IoT solution	 Sensors are spread around the property to detect motion and sound. When a sensor is activated, it sends an alert to the property owner and/or control centre, who can warn the police The security system can be monitored and armed/disarmed using a smartphone app or web-interface 					
Benefits	 Reduction reduce the Reduction dispatch o connection 	of crime. The dissua e chances of a break- of the negative outco f the police and syste n and local power sou	sive effect of the in ome from a brea em's ability to op urce	e alarm system car ak-in, due to the ea perate without fixed	n help Irly I line	
			2	3		

围

Security alarms

		Technologies	
Feature	Requirement	Comment	
Network Area	 Local 	The area to be covered is indoors and needs to operate without fixed line	
Spectrum	DedicatedShared	Ideally, the service would have some quality guarantee, but it could also work in shared spectrum	
Battery life	 Short 	Battery life can be short as the alarm can be connected to a local power source	
Connectivity cost	Low	The cost is expected to account for a relatively low amount of the security alarm system's recurring fee	
Module cost	 Medium 	The cost is expected to account for a relatively low amount of the security alarm system's cost	
Bandwidth	Low	The application requires low bandwidth	
Technolo	gies: 2(G ZigBee RF-Mesh	

Security alarms – most likely business models

Business models	Revenue of the IoT company	Device ownership
Revenue-sharing	Recurring	IoT company
Cost-savings sharing	Recurring	IoT company
Product-sharing	Usage	IoT company
Product-as-a-Service	Recurring	IoT company
Performance-as-a-Product	Usage	User
Transactional	Upfront	User

Most likely business models

Source: Analysys Mason

Security alarm

Traffic management

Traffic	 For IoT applications related to mission-critical
prioritisation	services, operators may need to prioritise traffic.
QoS classification	 It is important to define IoT applications by QoS class and perform traffic management based on that.

Case study 4: Industrial IoT

	IoT solution & benefits
loT solution	 Manufacturing machinery is equipped with sensors/actuators that allow the plant operator to remotely monitor and control it Machinery performance data is collected and analysed to help optimise the manufacturing processes
Benefits	 Improved manufacturing efficiency, which can lead to lower production cost and more affordable products Predictive maintenance leads to better management of replacement parts and increased uptime of manufacturing machinery

		Technologies	
Feature	Requirement	Comment	
Network Area	 Local 	Typically the area to be covered is indoors	
Spectrum	DedicatedShared	Depends on the application. For most, shared spectrum will be suitable, but some applications may need dedicated spectrum	
Battery life	 Typically NA 	Connections will likely have access to a local power source and so not be dependent on battery power	
Connectivity cost	 High, Medium, or Low 		
Module cost	 High 	Modules should be of industrial grade, robust enough to operate in an industrial environment	
Bandwidth	 High, Medium, or Low 	Dependent on application	
Technol	ogies: 30	ZigBee RF-Mesh	

Industrial IoT – most likely business models

Business models	Revenue of the IoT company	Device ownership
Revenue-sharing	Recurring	IoT company
Cost-savings sharing	Recurring	IoT company
Product-sharing	Usage	IoT company
Product-as-a-Service	Recurring	IoT company
Performance-as-a-Product	Usage	User
Transactional	Upfront	User

Most likely business models

Security

Reliable, secure networks build trust and
confidence, while supporting the growth and
development of the loT.

Security

How governments can help drive IoT adoption in their country

Governments should focus in six main areas to help drive the adoption of IoT products and services

Global deployment

Promoting investment

Building trust

Interoperability

Traffic management

Spectrum

Facilitating global deployments, promoting investment, building trust...

...supporting interoperability, traffic management and spectrum harmonisation

- Support and promote interoperable specifications and standards
 - Operators need the ability to actively manage network traffic to meet customer needs
 - This is particularly relevant for IoT services

- Allocate sufficient harmonised spectrum to enable the growth of IoT devices and services
- Adopt a flexible framework for both licensed and unlicensed spectrum

Wrap up

- Your objectives?
- Open issues?

Your objectives?

Open issues?

Thank you!

Glossary

- ARPD: average revenue per device
- ARPU: average revenue per user
- BTS: base transceiver station
- eCall: in-vehicle emergency call system triggered in case of an accident
- HVAC: heating, ventilating and air conditioning system
- IPv6: Internet protocol version 6
- LPWA: low power, wide area
- LTE M: LTE Machine-Type Communications
- MAC: media access control
- NB-IoT: narrow band IoT
- OTA: over-the-air
- QoS: quality of service
- SCADA: supervisory control and data acquisition